
www.manaraa.com

This article was downloaded by: [Florida International University]
On: 11 January 2015, At: 14:46
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Computer Science Education
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/ncse20

The contribution of visualization to
learning computer architecture
Cecile Yehezkel a , Mordechai Ben-Ari a & Tommy Dreyfus b
a Weizmann Institute of Science , Israel
b Tel Aviv University , Israel
Published online: 11 Jun 2007.

To cite this article: Cecile Yehezkel , Mordechai Ben-Ari & Tommy Dreyfus (2007) The contribution
of visualization to learning computer architecture, Computer Science Education, 17:2, 117-127

To link to this article: http://dx.doi.org/10.1080/08993400601165545

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/ncse20
http://dx.doi.org/10.1080/08993400601165545
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

www.manaraa.com

The Contribution of Visualization

to Learning Computer Architecture

Cecile Yehezkela*, Mordechai Ben-Aria and Tommy Dreyfusb

aWeizmann Institute of Science, Israel; bTel Aviv University, Israel

This paper describes a visualization environment and associated learning activities designed to

improve learning of computer architecture. The environment, EasyCPU, displays a model of the

components of a computer and the dynamic processes involved in program execution. We present

the results of a research program that analysed the contribution of the visualization to learning. We

found that EasyCPU facilitated the use of improved study methods and enabled the construction of

a viable mental model of the computer.

1. Introduction

This paper describes a visualization environment and associated learning activities

designed to improve learning of computer architecture and a research programme

aimed at assessing the contribution of the environment to improving learning. The

importance of learning computer architecture and the difficulties encountered by

teachers and students have been well documented (Clements, 2000; Loui, 1988).

Kumar and Cassel (2002) found that many faculty members who teach this subject

are teaching outside their areas of specialization and are not entirely comfortable with

the task. To improve the learning of computer architecture, instructors have searched

for better pedagogical methods. It was also our motivation to develop a visualization

environment and its associated learning activities.

The environment, EasyCPU, displays a model of the components of a computer

and the dynamic processes and information flows involved in program execution at

the architecture level (Yehezkel, Eliahu, & Ronen, 2001). EasyCPU also includes

tools needed to write assembly language programs: an editor, a simulated compiler

and linker, and debugging tools.

In section 2 we discuss existing software tools for learning computer architecture, a

taxonomy of visualizations, and related research on the effectiveness of visualization

*Corresponding author. Department of Science Teaching, Weizmann Institute of Science, Rehovot

76100, Israel. E-mail: ntcecile@wisemail.weizmann.ac.il

Computer Science Education

Vol. 17, No. 2, June 2007, pp. 117 – 127

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/07/020117-11

� 2007 Taylor & Francis

DOI: 10.1080/08993400601165545

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

systems. The EasyCPU environment and the learning activities in the course are

described in section 3. The environment and the learning activities were the subject of

a research project that blended quantitative and qualitative methodologies, as

described in section 4. Section 5 summarizes the paper.

2. Background

Professional tools such as simulators and debuggers used in the development of

assembly language programs are too sophisticated and complex for introductory level

students. There are many teaching tools for computer architecture (Cassel et al.,

2001; Yurcik, 2002; Yurcik & Osborne, 2001). While these tools share many features,

since they were designed by individual instructors they tend to be targeted to specific

populations, illustrating the level of abstraction required by the specific curriculum.

The lack of an appropriate framework to define the characteristics of visualization

environments motivated the construction of a new taxonomy for program

visualizations (Yehezkel, 2002), based on a very broad taxonomy of software

visualization (Price, Baecker, & Small, 1998), but emphasizing didactic and cognitive

aspects. This taxonomy guided the development of EasyCPU.

Evaluation of the effectiveness of visualizations is an important topic of research in

computer science education. Hundhausen, Douglas, and Stasko (2002) conducted a

meta-study on algorithm visualization evaluation research and concluded that how

students use technology has a greater impact on its effectiveness than what technology

is used. They suggested that ethnographic field techniques and observational studies

can help to understand both how and why technology might be effective in a realistic

situation. We used quantitative methods to assess the effectiveness of the

environment, while qualitative methods were used to improve our understanding of

both how and why visualization contributes to learning.

3. The EasyCPU Environment and the Learning Activities

The EasyCPU environment was designed as a learning tool for a high school course

in introductory computer organization and assembly language programming. The

textbook (Zilberman, 1999) covers the theoretical material that is taught in

classrooms; this is supplemented by laboratory sessions. EasyCPU has been used

since 1998 by more than 7000 students.

EasyCPU is based on a simplified model of an 8 bit version of the Intel 80X86

microprocessor family. The model consists of the CPU, memory segments, input/

output components, and the bus connections between them. The model of the CPU

includes the general registers, instruction and stack pointer registers, flags, and a

clock. The memory is partitioned into three segments, data, stack, and code, each

with 256 addressed bytes. Data can be entered directly into the CPU registers and

memory. The I/O consists of eight simulated LEDs for the output and eight simu-

lated buttons for the input. The control, data, and address busses are represented

by lines in different colors. EasyCPU simulates a subset of the instructions of the

118 C. Yehezkel et al.

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

Intel X86 which was selected to represent the various instruction categories,

addressing modes, and data types. EasyCPU operates in two modes, basic and

advanced, to enable a gradual increase in the complexity of the tasks assigned.

3.1. Activities in Basic Mode

In basic mode the control, address, and data busses connecting the different units

are animated to illustrate the read/write cycle type (memory or I/O). For example, in a

memory read cycle arrows slide on the address bus from the CPU to the memory,

the control line MemR lights up, and then arrows slide on the data bus from the

data segment to the CPU. The instructional goals addressed by the basic mode

activities are:

. to learn the structure and classification of the instruction set and to identify their

mnemonics;

. to learn the syntax of the assembly language and to understand addressing modes;

. to understand the mechanism of instruction execution and of memory and I/O

read/write cycles.

3.2. Activities in Advanced Mode

The advanced mode is designed for students who have attained a basic knowledge of

assembly language instructions, enabling them to develop programs. In effect, the

advanced mode functions as an integrated development environment (Figure 1).

The environment visualizes the processes taking place within the computer by

simultaneously displaying the source code, the data and stack segments, and an

on-screen simulation of I/O ports. After writing code in the program editor, assembly

and linking are simulated, followed by a simulation of execution of the program.

Students can step through a program, observing the state of the computer after each

step. The instructional goals addressed by the advanced mode activities are:

. to understand the structure of a program;

. to understand the process of executing a program;

. to acquire basic skills in the use of move, arithmetic, logic, and control

instructions;

. to become familiar with the stack data structure and the actions executed on it;

. to learn to build structured programs with subroutines;

. to introduce the interrupts and understand their implementation.

4. Assessing the Visualization Environment

The widespread use of EasyCPU provided an opportunity to conduct an evaluation of

its contribution to the development of the students’ programming skills; the four

phases of this research are described in the following subsections.

Learning Computer Architecture 119

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

4.1. Does Visualization Help Learn Programming?

This evaluation study was conducted to assess the effectiveness of EasyCPU in the

development of programming skills. We compared students’ performance when

writing programs using either EasyCPU or the professional tool Turbo Assembler

(TASM). The experimental group was composed of students from classes who

studied the course using EasyCPU, while the control group was composed of

students from another class who used TASM in the same course. All students were in

Grade 11 and the classes were taught by the same teachers who had taught these

students computer science fundamentals the previous year. The teachers all had

experience teaching this course on computer organization and assembly language.

A pre-test administered at the beginning of the academic year determined that

students of the two groups were of equivalent ability. The evaluation was done using

as a post-test the grade on a question of the matriculation examination, where

students were asked to write and test a short program in a computer laboratory.

Statistical analysis (ANOVA) was performed on the results, as shown in Table 1.

The experimental group scored slightly lower than the control group in the pre-

test, although this was not statistically significant, while the experimental group

significantly outperformed the control group in the post-test.

The results demonstrated that the use of a visualization environment can improve

the performance of students when writing as well as when testing a program. The

results motivated us to continue the investigation in order to better understand

the role played by visualization.

Figure 1. Developing a program in advanced mode

120 C. Yehezkel et al.

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

4.2. Visualization Environments and Activity Styles

The second study was intended to investigate the influence of the visualization

environment on the students as they engaged in a development activity. The subjects

were 12 Grade 11 high school students learning computer architecture with the

EasyCPU visualization environment. To adapt the complexity of the task to the

students’ programming skills, we specified a simple control unit for an elevator.

The hardware of the control unit was represented by eight buttons and eight light

bulbs. Six bulbs specified the floor where the elevator was, while the other two were

used to denote whether the elevator was to move up or down.

Following Levin and Mioduser (1996), we adopted the terms behavioural model

(B model) and conditional model (C model). The B model is a conceptual model of a

system that allows the student to describe verbally the system components and

different situations entered as a result of the system – user interaction, while the C

model is the control system implemented by programming a control unit. The

students were expected to define the B model of the elevator and to describe the

components of the system and the various states the elevator could be in as a result of

interaction between the user and the system. Then they were requested to implement

the C model of the control system according to the B model they had defined.

The activity was divided into two parts. In Part I the students were asked to carry

out the entire task on paper: to define a B model and to write a program to implement

the C model. In Part II the students were asked to use the visualization environment

to test their program; they had to submit a revised version after completing the

testing. This set-up enabled us to investigate the methods used by students to convert

a B model into a C model without feedback provided by the environment and then to

investigate the contribution of the environment in testing and correcting the program.

Two students, J and S, were asked to perform the activity in collaboration and were

videotaped while working on the assignment. The remaining students were observed

while performing the activity individually. The analysis was undertaken in two phases:

an in-depth analysis of the videotape and the field notes, followed by a differential

analysis of the two versions of the program from each student. (For lack of space the

differential analysis is not included here.)

The analysis was carried out at two levels: at the micro level we identified foci of

conversation (the main subject discussed in each utterance) from the transcript of the

videotape, while at the macro level we used these foci of conversation to identify the

Table 1. Student achievement

Group Controla (n¼ 26, 1 class) Experimentala (n¼ 99, 3 classes) F

Pre-test 73.9+ 11.2 68.9+ 14.4 F3,112¼ 1.67

Post-test 82.2+ 23.4 92.8+ 13.15 F3,121¼ 3.34b

aMeans+SD.
bStatistically significant at the p5 .05 level.

Learning Computer Architecture 121

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

foci of operations (the central activity being carried out in the problem-solving process).

For example, the main conversation foci were the elevator, the user of the elevator,

the program, and a more holistic reference to the embedded system, the hardware. In

the transcript the foci of conversation changed as a function of time, reflecting

changes as the students passed from one objective in the task to another. Examples of

foci of operations are a description of the B model, implementation of the C model,

and its verification relative to the B model. The goal of this analysis was to identify the

different phases in the implementation of the embedded system in terms of foci of

operations and then to identify when students make use of visualization components.

Table 2 shows examples of this analysis, where items 1 – 3 pertain to Part I and items

4 – 5 to Part II. (The examples are not sequential; they were selected for the purposes

of presentation.)

From this analysis we created a diagram depicting the foci of conversation as a

function of time. The diagram was analysed visually, concentrating on timing,

changes, sequences, and frequency of the foci of conversation. This enabled us to

identify the foci of operations that reflected the phases in implementing the control

Table 2. Samples of foci of conversation and operation

Student utterance

Student points

to

Foci of

conversation Foci of operation

1 S: Wait a minute. . . . He

[the user] requests [the elevator].

How can I know what he wants

when he requested it?

User and elevator Discussion on

B model

2 J: Do you understand? You have

to control the elevator

[by programming].

Lights that

represent the

floors

Elevator and

program

Understanding

the meaning of

programming

the control unit

3 S: Please tell me, how can you

stop the program inside the

program?

Program Implementation

of the C model

4 J: We will use the compare CMP

instruction. Suppose that we are

at floor 0. Here it is no longer

possible to go down. So, do you

understand? This is not relevant

to it [the system], so this part of

the program is unnecessary. He

[the user] can’t request a negative

floor!

Light that

represents

the 0th floor

Program and

B model

Implementation

of the C model

relating to the

B model

5 J: Look, the elevator is going

down. That’s curious!

Elevator Confrontation of

the C model

and the

B model

122 C. Yehezkel et al.

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

system. Next, from an examination of the sequences of foci of operations and their

change as a function of time, we were able to characterize episodes of task

performance. It is impossible to render here the full 100 minute diagram; Figure 2

shows a 13 minute section illustrating foci of conversation and operation. (The full

diagram can be downloaded from http://stwww.weizmann.ac.il/g-cs/benari/articles/

figure.pdf.)

Although in Part I students were not supposed to use the visualization, we noticed

that they pointed to components displayed on the screen that were relevant to

implementation of the operation panel of the elevator—this was done to explain their

ideas one to another (e.g. item 2 of Table 2). The visualization components provided

them with a common visual vocabulary that was essential for collaboration. Initially

the students behaved as naive users, thinking that the elevator worked by itself—J

explained to S that she had to drive the elevator by programming (item 2 of Table 2)

and then emphasized: ‘‘What do you mean, it [elevator] can stop—you have to make

it stop!’’ They gradually learned to discern between the control unit and the

operational unit and to understand their role as programmers of the control unit

(item 3 of Table 2). When implementing a C model appropriate to the B model they

discussed issues using a formal language containing expressions belonging to the B

model (item 4 of Table 2). The students were able to provide a detailed description of

the B model, but they failed to implement the required C model and to properly

check the correctness of the program they wrote.

In Part II they used the visualization environment to confront the C model with the

B model. In Figure 2 we can see the transition between the diagnosis and correction

of the C model by reference to the B model and the systematic checking of the C

model. The former is characterized by recurrent references to the program; the latter

by few references to the program, more iterative references to the comparison of the

Figure 2. Conversation and operation foci during a 13 minute period of the activity

Learning Computer Architecture 123

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

C model and the B model, and intensive use of the step by step function of the

environment.

A glance at the 100 minute diagram shows the great diversity in conversation foci

in Part II, as opposed to the lack of diversity in Part I. In Part I they made recurrent

use of holistic references like: ‘‘He skips [the floor] now and he will check it when he

passes [the next floor],’’ where we attribute ‘‘he’’ to the entire embedded system. In

Part I they made 56 such references, compared with 36 in Part II. In contrast, they

referred to the elevator and its user 18 times in Part I, compared with 36 times in

Part II. We conclude that in Part I they did not distinguish between the different

components of the embedded system, but in Part II the concretization of the

embedded system components by the visualization enabled them to distinguish

between the components and to realize that their program had to play the role of

‘‘director’’ of the embedded system.

4.3. How is Visualization Used to Test a Program?

We analysed the methods students used to test assembly language programs in the

visual EasyCPU environment and the professional TASM environment. Here we

summarize this study (a comprehensive description was published in Yehezkel,

2003).

We tried to identify behavioural patterns that characterized the methods students

used and to relate these methods to the environments. The subjects were Grade 10

high school students who studied the course in computer organization and assembly

language. One group of 18 students used EasyCPU, while a second group of 12

students used TASM. The students were asked to detect two types of errors that were

intentionally inserted into a program. One (the I error) required in-depth analysis of

the execution of the program, while the other (the E error) was caused by an incorrect

boundary condition that could be easily detected by examining the output as a

function of the input. Two pairs of students were videotaped working on the

assignment, one using EasyCPU and the other using TASM; observations of the

remaining students were carried out.

The work of each pair was represented by a plot of the time the students devoted

to basic operations: data input, instant run, step by step, edit, and mental run

(see figure 1 in Yehezkel, 2003). This enabled us to conduct a detailed graphical

analysis of the characteristics of the basic operations, such as timing, frequency,

and duration, to identify patterns and to compare the ways of performing the

activity.

The students using TASM employed primarily the data input and instant run

operations. We concluded that they adopted a strategy of trial and error as they

struggled to retrieve the relevant information from the screen and that they related to

the program as a black box. In contrast, the students using EasyCPU tended to run

the program step by step. They seemed to feel more confident in investigating the

program’s execution using the feedback provided by the environment and they

showed that they knew how to exploit the potential of the environment. Further

124 C. Yehezkel et al.

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

qualitative analysis of the transcripts and the field notes of the observations of the

remaining students confirmed these findings.

Only 58% of TASM students, as compared with 94% of EasyCPU students,

succeeded in identifying the I error, which required an in-depth analysis of execution

of the program. On the other hand, there was no significant difference in

identification of the E error, which required only an analysis of the input and output

(94% of the EasyCPU students and 83% of the TASM students). These results

strengthened the findings of the qualitative study.

We concluded that the visualization of the EasyCPU environment facilitated the

students’ investigations of the detailed behaviour of the program, whereas learning

without visualization may be detrimental to comprehension of program execution

by inexperienced students. Our next step was to evaluate the contribution of

visualization to understanding the mechanism of instruction execution, which is

essential to understanding models of computers.

4.4. Improving Mental Models of Computers

In this study we wished to evaluate the contribution of the EasyCPU visualization

environment to the understanding of a conceptual model of a computer. This was

done by investigating the mental models that students constructed. This research

is summarized here (a comprehensive description was published in Yehezkel,

Ben-Ari, & Dreyfus, 2005).

The mental models of the students were investigated at two points in time: first, after

studying the textbook but before exposure to EasyCPU and, second, after performing

exercises with the system. The research tools were two tasks, a pre-test and a post-test,

in which the students were asked to describe both the static viewpoint (the topology of

the interconnections between the units CPU, input, output, and memory) and the

dynamic viewpoint (six scenarios describing the data transfer resulting from executing

specific instructions) of the computer. The research was carried out in a class of 11

Grade 10 high school students learning with EasyCPU. They were asked to describe

the system model both graphically and in written text alongside the graphs.

On the pre-test five of the 11 students chose to draw systems consistent with a data

flow model in which data flows from the input to the CPU to the output, two more

drew memory-centric models, and only four drew the correct CPU-centric model.

On the post-test, after the students had interacted with the conceptual model

presented by the visualization, all the students drew models consistent with the

correct one.

These findings support the view that the visualization was critical in enabling the

construction of a viable mental model, a process that did not occur by textbook

learning alone. After studying theoretical materials the majority of the students still

held mental models that had been influenced by their experience as computer end-

users, since the data flow model is consistent with how users interact with computers.

Initially the students were not exposed to any dynamic visualization of the process of

instruction execution, only to frontal teaching and the textbook. Once the students

Learning Computer Architecture 125

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

were exposed to the dynamic visualization of EasyCPU they developed viable mental

models.

5. Conclusions

Our research has shown that students who used the EasyCPU visual environment

performed better than those who used the TASM professional environment. We

found that the concretization of the embedded system helped students in

conceptualizing the system and in developing programming skills. We were able to

demonstrate that the students used different methods when working in the two

environments: students using TASM tended to relate to the program as a black box,

while EasyCPU facilitated studying the execution of the program at the level of

individual instructions. We discovered that the students developed non-viable mental

models during the textbook phase of learning, but that after using EasyCPU students’

models pointed to an understanding of the roles of the various computer units and

the interactions between them.

Acknowledgements

We would like to thank the teachers and the students who participated in this research

and Bruria Haberman for valuable comments.

References

Cassel, L., Kumar, D., Bolding, K., Davies, J., Holliday, M., Impagliazzo, J., et al. (2001).

Distributed expertise for teaching computer organization and architecture (ITiCSE 2000

Working Group Report). ACM SIGCSE Bulletin, 33(2), 111 – 126.

Clements, A. (Ed.) (2000). Computer Architecture Education [Special issue]. IEEE Micro, 20(30).

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm visualization

effectiveness. Journal of Visual Languages and Computing, 13(3), 259 – 290.

Kumar, D., & Cassel, L. (2002). A state of the course report: Computer organization and

architecture. SIGCSE Bulletin, 34(3), 175 – 177.

Levin, I., & Mioduser, D. (1996). A multiple-constructs framework for teaching control concepts.

IEEE Transactions of Education, 39(4), 488 – 496.

Loui, M. C. (1988). The case for assembly language programming. IEEE Transactions on Education,

31(3), 160 – 164.

Price, B. A., Baecker, R. M., & Small, I. (1998). An introduction to software visualization.

In J. Stasko, J. Domingue, M. Brown, & B. Price (Eds.), Software visualization (pp. 3 – 34).

Cambridge, MA: MIT Press.

Yehezkel, C. (2002). A taxonomy of computer architecture visualizations. SIGCSE Bulletin, 34(3),

101 – 105.

Yehezkel, C. (2003). Making program execution comprehensible—one level above the machine

language. SIGCSE Bulletin, 35(3), 124 – 128.

Yehezkel, C., Ben-Ari, M., & Dreyfus, T. (2005). Computer architecture and mental models.

SIGCSE Bulletin, 37(1), 101 – 105.

126 C. Yehezkel et al.

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

www.manaraa.com

Yehezkel, C., Eliahu, M., & Ronen, M. (2001). Teaching computer architecture with a computer-

aided learning environment. SIGCSE Bulletin, 33(1), 445.

Yurcik, W. (Ed.) (2000). Specialized computer architecture simulators that see the present

and may hold the future [Special issue]. Journal on Educational Resources in Computing,

2(1).

Yurcik, W., & Osborne, H. (2001). A crowd of little man computers: Visual computer simulator

teaching tools. Proceedings of the 33rd Conference on Winter Simulation (pp. 1632 – 1639). Los

Alamitos, CA: IEEE Computer Society Press.

Zilberman, H. (1999). Computer organization and assembly language. Tel Aviv: Open University.

Learning Computer Architecture 127

D
ow

nl
oa

de
d

by
 [

Fl
or

id
a

In
te

rn
at

io
na

l U
ni

ve
rs

ity
]

at
 1

4:
46

 1
1

Ja
nu

ar
y

20
15

